Abyssal Zone Classic Mac OS
Nightmare Zone Helper. OS Buddy The Old School RuneScape OSRS Toolkit. Download Discover Pro. There are many OSBuddy users online right now. Get OS Buddy for Windows. Keyzone Classic is a free Piano plugin developed by Bitsonic. Instruments Effects MIDI Hosts What's new Keyzone Classic by Bitsonic. Really trying hard but no result. BF Feb 13 2021 Feb 13 2021 same, rly frustrating. Reply emu sans Oct 27 2020 (4 / 5) Oct 27 2020. Abyssal zone definition is - the biogeographic realm consisting of the deep sea, lacking higher plant life because of the absence of light, and occupied chiefly by carnivorous animals that are often blind or have special luminous organs and are structurally adapted to withstand the great pressures of this level.
- Abyssal Zone Animals List
- Abyssal Zone Food Web
- Abyssal Zone Of The Ocean
- Abyssal Zone Classic Mac Os Update
Abyssal Zone Animals List
The abyssal zone or abyssopelagic zone is a layer of the pelagic zone of the ocean. 'Abyss' derives from the Greek word ἄβυσσος, meaning bottomless.[1] At depths of 3,000 to 6,000 metres (9,800 to 19,700 ft),[2] this zone remains in perpetual darkness.[3][4] It covers 83% of the total area of the ocean and 60% of the Earth's surface.[5] The abyssal zone has temperatures around 2 to 3 °C (36 to 37 °F) through the large majority of its mass.[3] Due to there being no light, there are no plants producing oxygen, which primarily comes from ice that had melted long ago from the polar regions. The water along the seafloor of this zone is actually devoid of oxygen, resulting in a death trap for organisms unable to quickly return to the oxygen-enriched water above. This region also contains a much higher concentration of nutrient salts, like nitrogen, phosphorus, and silica, due to the large amount of dead organic material that drifts down from the above ocean zones and decomposes.[3] The water pressure can reach up to 76 megapascal.
The area below the abyssal zone is the sparsely inhabited hadal zone.[1] The zone above is the bathyal zone.[1]
Trenches[edit]
The deep trenches or fissures that plunge down thousands of meters below the ocean floor (for example, the mid-oceanic trenches such as the Mariana Trench in the Pacific) are almost unexplored.[6] Previously, only the bathyscapheTrieste, the remote controlsubmarineKaikō and the Nereus have been able to descend to these depths.[7][8] However, as of March 25, 2012 one vehicle, the Deepsea Challenger was able to penetrate to a depth of 10,898.4 meters (35,756 ft).
Ecosystem[edit]
Without producers, the cornerstone of most ecosystems, a unique ecosystem forms. Rather than relying on producers to form the base of the food pyramid, organisms living in the abyssal zone must feed on the dead organic detritus that falls from oceanic layers above. The biomass of the abyssal zone actually increases near the seafloor as compared to areas above as most of the decomposing material and decomposers rest on the seabed.[9]
The sea floor of the abyssal zone consists of or is layered by different materials depending on the depth of the sea floor. If the seafloor is around 4000m below sea level, the seafloor usually consists of calcareous shells of foraminifera zooplankton and phytoplankton. At depths greater than 4000m below sea level, the seafloor lacks these shells, as they dissolve once they reach a depth greater than 4000m. This leaves behind a seafloor consisting mostly of brown clay and the remaining silica from dead zooplankton and phytoplankton.[3] In some areas of this zone, organisms are able to sustain themselves off the products of hydrothermal vents. Some bacterial species use the vents to create and use chemical energy to produce food. For example, many of these organisms convert hydrogen sulfide to sulfate to produce chemical energy. They use that energy to synthesize the carbon-based compounds they use as food.[10] These organisms are then preyed upon by other organisms, meaning that the bacteria can also take the place of plants as part of the bedrock for this ecosystem.
Biological adaptations[edit]
Organisms that live at this depth have had to evolve to overcome challenges provided by the abyssal zone. Fish and invertebrates had to evolve to withstand the sheer cold and intense pressure found at this level. They also had to not only find ways to hunt and survive in constant darkness but to thrive in an ecosystem that has less oxygen and biomass, energy sources or prey items, than the upper zones. To survive in a region with so few resources and low temperatures, many fish and other organisms developed a much slower metabolism and require much less oxygen than those in upper zones. Many animals also move very slowly to conserve energy. Their reproduction rates are also very slow, to decrease competition and conserve energy. Animals here typically have flexible stomachs and mouths so that when scarce food items are found they can consume as much as possible.[10]
Other challenges faced by life in the abyssal zone are the pressure and darkness caused by the zone’s depth. Many organisms living in this zone have evolved to minimize internal air spaces, such as swim bladders. This adaptation helps to protect them from the extreme pressure, which can reach around 75 MPa (11,000 psi). The absence of light also spawned many different adaptations, such as having large eyes or the ability to produce their own light. Large eyes would allow the detection and use of any light available, no matter how small.[3] Another eye adaptation is that many deep-sea organisms have evolved eyes that are extremely sensitive to blue light. This is because as sunlight shines into the ocean, the water absorbs red light, while blue light, with its short wavelength, continues moving down to the water's depths. This means that in the deep ocean, if any light remains then it is most likely blue light so animals wanting to capitalize on that light would need specialized eyes tuned to use it. Many organisms use other specialized organs or methods for sensing their surroundings, some in conjunction with specialized eyes. The ability to make their own light is called bioluminescence. Fishes and organisms living in the abyssal zone have developed this ability not only to produce light for vision, but also to lure in prey or a mate and conceal their silhouette. Scientists believe that over 90% of life in the abyssal zone use some form of bioluminescence.[3] Many animals that are bioluminescent produce blue light, since it moves farther underwater than other colors of light, as explained earlier.[12] Due to this lack of light, complex designs and bright colors are not needed. Most fish species have evolved to be transparent, red, or black so they better blend in with the darkness and don't waste energy on developing and maintaining bright or complex designs.[3]
Animals[edit]
The abyssal zone is surprisingly made up of many different types of organisms, including microorganisms, crustaceans, molluscan (bivalves, snails, and cephalopods), different classes of fishes, and a number of others that might not have even been discovered yet. Most of the fish species in this zone are characterized as demersal or benthopelagic fishes. Demersal fishes are a term that refers to fishes whose habitat is very close to (typically less than five meters) or on the seafloor. Most fish species fit into that classification because the seafloor contains most of the abyssal zone’s nutrients so the most complex food web or greatest biomass would be in this region of the zone.
For benthic organisms in the abyssal zone, species would need to have evolved morphological traits that could keep them out of oxygen-depleted water above the sea floor or a way to extract oxygen from the water above, but also, allow the animal access to the seafloor and the nutrients located there.[13] There are also animals that spend their time in the upper portion of the abyssal zone, and even sometimes spending time in the zone directly above, the bathyal zone. While there are a number of different fish species representing many different groups and classes, like Actinopterygii or ray-finned fish, there are no known members of the class Chondrichthyes, animals such as sharks, rays, and chimeras, that make the abyssal zone their primary or constant habitat. Whether this is due to the limited resources, energy availability, or other physiological constraints is unknown. Most Chondrichthyes species only go as deep as the bathyal zone.[14]
- Anglerfish: Some species of this fish are considered demersal while others swim and live in the upper portions of the abyssal zone. They lack a swim bladder, so that high pressure is not an issue. They use bioluminescence to lure in prey with a specialized lure on their head. Ceratioidei anglerfish have an odd mating process. The male fuses with the much larger female and fertilizes her eggs. Once fused, the male parasitizes off her for the rest of his life.
- Tripod fish (Bathypterois grallator): Their habitat is along the ocean floor, usually around 4,720 m below sea level. Their pelvic fins and caudal fin have long bony rays protruding from them. They face the current while standing still on their long rays. Once they sense food nearby, they use their large pectoral fins to hit the unsuspecting prey towards their mouth. Each member of this species has both male and female reproductive organs so that if a mate cannot be found, they can self fertilize.
- Gulper eel: The gulper eel habitat range typically goes form a depth of 500 to 3,000 meters below sea level. Not only does this animal have a giant mouth, but the mouth is loosely hinged with a pouch built into its lower jaw, making it the perfect mouth for swallowing fish much larger than itself. Like the anglerfish it also lacks a swim bladder. The eel's eyes most likely evolved to detect small traces of light instead of full images.
- Dumbo octopus: This octopus usually lives at a depth between 3,000 to 4,000 meters, deeper than any other known octopus. They use the fins on top of their head, which look like flapping ears, to hover over the sea floor looking for food. They use their arms to help change directions or crawl along the seafloor. To combat the intense pressure of the abyssal zone, this octopus species lost its ink sac during evolution. They also use their strand-like structured suction cups to help detect predators, food, and other aspects of their environment.
- Cusk eel (Genus Bassozetus): There are no known fish that live at depths greater than the cusk eel. The depth of the cusk eel habitat can be as great as 8,370 meters below sea level. This animal's ventral fins are specialized forked barbel-like organs that act as sensory organs.
- Abyssal grenadier: This resident of the abyssal zone is known to live at a depth ranging from 800 and 4,000 meters. It has extremely large eyes, but a small mouth. It is thought to be a semelparous species, meaning it only reproduces once and then dies after. This is seen as a way for the organism to conserve energy and have a higher chance of having some healthy strong children. This reproductive strategy could be very useful in low energy environments such as the abyssal zone.
Environmental concerns[edit]
As with all of the rest of the natural world climate change has negative effects. Due to the zone’s depth, increasing global temperatures do not affect it as quickly or drastically as the rest of the world, but the zone is still afflicted by ocean acidification. Along with climate change and ocean acidification, pollutants, such as plastics, are also present in this zone. Plastics are especially bad for the abyssal zone due to the fact that these organisms have evolved to eat or try to eat anything that moves or appears to be detritus, resulting in most organisms consuming plastics instead of nutrients. Both ocean acidification and pollution are decreasing the already small biomass that resides within the abyssal zone. Another problem caused by humans is overfishing. Even though no fishery can fish for organisms anywhere near the abyssal zone, they are still causing harm. The abyssal zone depends on dead organisms from the upper zones sinking to the seafloor, since their ecosystem lacks producers due to lack of sunlight. As fish and other animals are removed from the ocean, the frequency and amount of dead material reaching the abyssal zone decreases. A future problem for the abyssal zone could be deep sea mining operations. The talks and planning for this industry are already underway. This could be disastrous for this extremely fragile ecosystem since the ecological dangers from mining for deep sea minerals are many. Mining could increase the amount of pollution in not only the abyssal zone, but in the ocean as a whole, and would physically destroy habitats and the seafloor. This industry represents a looming threat to the abyssal zone and the rest of the ocean's inhabitants.[4]
See also[edit]
- Deep sea fish
References[edit]
- ^ abc'Abyssal'. Dictionary.com. Archived from the original on 18 April 2009. Retrieved 2009-04-27.
- ^'Bathypelagic zone'. Layers of the ocean. National Weather Service. Archived from the original on 7 February 2017. Retrieved 1 January 2021.CS1 maint: bot: original URL status unknown (link)
- ^ abcdefgNelson R (October 2013). 'Deep Sea Biome'. Untamed Science. Archived from the original on 31 March 2009. Retrieved 2009-04-27.
- ^ abDrazen JC, Sutton TT (January 2017). 'Dining in the Deep: The Feeding Ecology of Deep-Sea Fishes'. Annual Review of Marine Science. 9 (1): 337–366. Bibcode:2017ARMS....9..337D. doi:10.1146/annurev-marine-010816-060543. PMID27814034.
- ^'Interesting Facts About The Abyssal Zone'. sciencestruck.com. Retrieved 2020-12-25.
- ^Nelson R (April 2007). 'Abyssal'. The Wild Classroom. Archived from the original on 25 March 2009. Retrieved 2009-04-27.
- ^'History of the Bathyscaph Trieste'. Bathyscaphtrieste.com. Retrieved 2009-04-27.
- ^'World's deepest-diving submarine missing'. USA Today. Gannett Company Inc. 2 July 2003. Retrieved 2009-04-27.
- ^Linardich, C; Keith, DA (2020). 'M2.4 Abyssopelagic ocean waters'. In Keith, D.A.; Ferrer-Paris, J.R.; Nicholson, E.; Kingsford, R.T. (eds.). The IUCN Global Ecosystem Typology 2.0: Descriptive profiles for biomes and ecosystem functional groups. Gland, Switzerland: IUCN. doi:10.2305/IUCN.CH.2020.13.en. ISBN978-2-8317-2077-7.
- ^ abBrennan J (9 March 2018). 'Animals of the Abyssal Ecosystem'. Sciencing. Retrieved 2019-05-01.
- ^Shukman, David (2013-02-21). 'Deepest undersea vents discovered'. BBC News. Retrieved 2020-05-19.
- ^Wigmore G. 'The unique visual systems of deep sea fish'. Phys.org. Retrieved 2019-05-01.
- ^Gartner Jr JV (1997). '4 Feeding At Depth'. Fish Physiology. 16: 115–193. doi:10.1016/S1546-5098(08)60229-0. ISBN9780123504401.
- ^Priede IG, Froese R, Bailey DM, Bergstad OA, Collins MA, Dyb JE, Henriques C, Jones EG, King N (June 2006). 'The absence of sharks from abyssal regions of the world's oceans'. Proceedings. Biological Sciences. 273 (1592): 1435–41. doi:10.1098/rspb.2005.3461. PMC1560292. PMID16777734.
Abyssal Zone Food Web
Basic instructions for installing and updating from GitHub can be found in the ReadMe of the Omeka S github repository.
Abyssal Zone Of The Ocean
System Requirements
In order to install Omeka S, you will need a server running the following:
- Linux
- Apache (with AllowOverride set to 'All' and mod_rewrite enabled)
- MySQL, minimum version 5.6.4 (or MariaDB, minimum version 10.0.5)
- PHP, minumum version 7.1, with PDO, pdo_mysql, and xml extensions installed
- Optional, to create thumbnails: ImageMagick version 6.7.5 or greater, the PHP
imagick
extension, or the PHPgd
extension
Installing from released zip file
NB: Before you install Omeka S, you need to create a MySQL database and user. Omeka S must have a dedicated database (you cannot use a prefix for a database used by another system or Omeka S or Classic installation). For more information on creating a database and user, please see your hosting's support documentation or talk to your system administratory.
- Download the latest release from the release page
- Open config/database.ini and add your MySQL username, password, database name, and host name. The user and database must be created before this step.
- Make sure the files/ directory is writable by Apache.
- In your web browser, navigate to the admin page for your Omeka S installation (yoururl/admin), where you can complete installation.
Initial setup
Once you have successfully installed and configured the database.ini file, you can navigate to the admin location of your Omeka S installation. If your installation is /myomekas/
then your admin dashboard would be located at /myomekas/admin
The first time you to the install site, you will need to enter information for the first user, along with basic information for your install. There are two sections on this page: Create the first user and Settings.
In the First User section, enter:
- an email address, and type again to confirm.
- confirm the password and type again in the next input to confirm.
- a display name for the user
Note that you can change all of these later in the User management section of your install.
In the Settings section, enter:
- An installation title which will display on the admin site,
- The installation's time zone (select from dropdown), and
- select a locale for the language of the admin side of the installation.
You can changes these at any time in the in the Settings section of your Admin Dashboard
See Configuration Options for information on settings for thumbnail generation, php path, and more.
Updating
- Download the latest release from the release page
- Make a copy of your
/config
directory. You will need to restore yourlocal.config.php
anddatabase.ini
files from that copy. - Make a copy of your
/modules
and/themes
directories. - Make a copy of your
/files
directory. - Remove all Omeka S files, and replace them with the files from the updated zip file.
- Replace your original
/config/local.config.php
and/config/database.ini
file, and the/modules
,/themes
, and/files
directories that you copied. - In your web browser, go to your site's admin page (yoururl/admin) and run any migrations that are needed.
Install on Windows or Mac OS (basic development purpose only)
Omeka S does not support proprietary or closed source operating systems. However, for basic development purposes or for quick training, Omeka can run with WAMP, MAMP or similar tools.
Follow the standard installation instructions. You will need to make the following configuration changes to the file config/local.config.php
to work.
First, the php path may need to be set if php. Edit the config file and fill the phpcli_path
at line 12 with the appropriate path for your operating system.
Second, you need to configure Omeka S to use the thumbnailer which is available in your server. Edit the local.config.php
file with the following, based on what is available for your system:
- replace the default thumbnailer
OmekaFileThumbnailerImageMagick
byOmekaFileThumbnailerGd
. - replace the default thumbnailer
OmekaFileThumbnailerImageMagick
byOmekaFileThumbnailerImagick
, and enable Imagick in the filephp.ini
of your server via the server admin interface or directly in the file. - keep the default thumbnailer, but install the command line tool
imagemagick
and set its directory as value ofimagemagick_dir
. To install imagemagick, see the documentation of your server.
Abyssal Zone Classic Mac Os Update
GD is a basic graphic library installed by default with PHP. It can create thumbnails for common image formats only (jpeg, gif, png). Imagick and ImageMagick are the same library and can create thumbnails for more than 200 formats. The difference is that the first is integrated in php and generally older than the command-line version.